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Extraction of interaction parameters for α-RuCl3 from neutron data using machine learning
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Single-crystal inelastic neutron-scattering (INS) data contain rich information about the structure and dy-
namics of a material. Yet the challenge of matching sophisticated theoretical models with large data volumes
is compounded by computational complexity and the ill-posed nature of the inverse scattering problem. Here
we utilize a novel machine-learning (ML)-assisted framework featuring multiple neural network architectures
to address this via high-dimensional modeling and numerical methods. A comprehensive data set of diffraction
and INS measured on the Kitaev material α − RuCl3 is processed to extract its Hamiltonian. Semiclassical
Landau-Lifshitz dynamics and Monte-Carlo simulations were employed to explore the parameter space of
an extended Kitaev-Heisenberg Hamiltonian. A ML-assisted iterative algorithm was developed to map the
uncertainty manifold to match experimental data, a nonlinear autoencoder was used to undertake information
compression, and radial basis networks were utilized as fast surrogates for diffraction and dynamics simulations
to predict potential spin Hamiltonians with uncertainty. Exact diagonalization calculations were employed to
assess the impact of quantum fluctuations on the selected parameters around the best prediction.

DOI: 10.1103/PhysRevResearch.4.L022061

Introduction. Highly frustrated quantum systems are im-
portant routes to realizing exotic ground states and excitations.
They are proposed to host states ranging from long-range
entangled quantum spin liquids (QSLs) with nonlocal exci-
tations to quantum spin ices with emergent photons [1–3].
Recently, the two-dimensional (2D) honeycomb spin-1/2 ma-
terial α-RuCl3 [Fig. 1(a)] has garnered particular attention
after being reported [4–11] as a leading candidate [12–14]
for realization of the Kitaev model—an exactly solvable QSL
Hamiltonian [15,16]. The Kitaev model is a spin network with
competing bond-dependent interactions and hosts a topologi-
cal QSL ground state that supports two types of fractionalized
excitations: visons, which are excitations of the emergent flux,
and deconfined Majorana fermions. These quasiparticles are
predicted to show non-Abelian statistics, suggesting potential
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applications in, e.g., topological quantum computing [17].
Recently, theoretical propositions have been made for inter-
ferometers utilizing their braiding statistics as a precursor to
undertaking quantum operations [18,19]. Meanwhile, how-
ever, the experimental situation regarding the quasiparticles
in α-RuCl3 remains inconclusive primarily due to difficulties
in determining the precise nature of the spin couplings in the
material and to what extent these destabilize the QSL state in
zero and applied magnetic fields.

Experiments have revealed evidence that α-RuCl3 is close
to the Kitaev QSL[12,13,23,24]. At low temperatures and
magnetic fields it orders magnetically in a zigzag (Z.Z.)
structure [6,25–27], implying the presence of symmetry-
allowed interactions additional to the Kitaev Hamiltonian,
as is generically predicted by theory [20,28–30]. Inelastic
neutron scattering (INS) shows scattering dominated by con-
tinua at the zone center [7–11], interpreted as originating
from underlying fractional Majorana excitations or from in-
coherent excitations due to magnon decay [31–33]; both
related to strongly fluctuating quantum states. Similarly, Ra-
man scattering shows a broad scattering continuum at the
zone center [5,34–37] and a fermionic temperature depen-
dence interpreted as indicating fractional excitations. The
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FIG. 1. (a) The α-RuCl3 crystal structure, consisting of Ru sites
at centers of edge-sharing Cl octahedra. (b) The magnetism is due
to Ru3+ ions, which form a honeycomb lattice. Nearest-, second-
nearest-, and third-nearest-neighbor bonds are indicated by solid,
dashed, and dotted lines, respectively. Anisotropic nearest-neighbor
interactions are considered as given in Eq. (1). (c) Machine-learned
phase diagram for the J1 − K − � model at T = 1 K with theoretical
phase boundaries from Ref. [20] overlaid in black dashed lines. The
different colors, which represent different structure factors S(Q),
are predicted by a trained neural network as explained in the main
text. Numbered points correspond to S(Q) shown in Fig. 2(b). The
identified phases include ferromagnetic [FM], Néel [AFM], 120

◦
,

and zigzag [Z.Z.] orders.

Z.Z. order melts in a narrow range of applied in-plane mag-
netic fields, possibly inducing a QSL state [10,11,38–40].
Oscillations of the thermal conductivity were also observed
in this field range, suggesting the presence of a Fermi sur-
face [41–43]. Perhaps the most striking reports are those
of a half-integer-quantized thermal Hall effect in the same
field range [44–46]. Additional experimental evidence for
Kitaev interactions in α-RuCl3 has been reported using,
e.g., inelastic x-ray scattering [47], thermodynamical [8,48–
51], NMR [39,52], electron-spin resonance [53], microwave
absorption [54], thermal transport [55,56], and THz spec-
troscopy [57–61] techniques.

The complexity of magnetic interactions in RuCl3 has hin-
dered determination of an underlying model. Various groups
have fit or derived proposed Hamiltonian parameters for the
material [6,9,23,24,29–31,59,60,62–71], but these studies dis-
agree significantly regarding which interactions are present
and on values of specific interaction parameters [33,72,73].
Part of the reason for this lack of agreement is that many
experimental fits have relied on linear spin-wave theory
(LSWT), which cannot account for the quantum fluctuations
inherent to α-RuCl3. However, the more central issue is that
a comparatively large set of weak perturbations is possible,
which can significantly modify the magnetic ordering, dynam-
ics, and thermal properties of Kitaev materials. With such a
high-dimensional parameter space, comparing modeling with
experimental data leaves a great deal of uncertainty unless
comprehensive enough to explore the range of possible inter-
actions, an approach which is absent to date.

Scattering data contain considerable information on the
magnetic states and interactions in materials. A difficult step
in the quantification of models has been inversion from
measured data to a model—the so-called inverse scattering
problem—which is usually ill posed due to loss of phase

information. In this regard, machine learning (ML) [74,75]
has shown promising results [76–80]. Here we combine
ML approaches with large-scale semiclassical simulations
(SCSs) [80]. ML-SCS techniques have been used to suc-
cessfully extract couplings from diffuse neutron-scattering
data and yielded significant insight by mapping the physical
behavior in high-dimensional interaction spaces of materi-
als [80,81]. We extend these methods to include dynamics
data for α-RuCl3, allowing a comprehensive fit.

Experiments. Neutron diffraction studies were performed
at the Spallation Neutron Source (SNS) [82] using the
CORELLI beamline [83]. A 125-mg α-RuCl3 crystal was
mounted on an aluminium plate and aligned with the [h, 0, l]
plane horizontal. The crystal was rotated through 170

◦
in 2

◦

steps about the vertical axis. The temperature of the measure-
ment was 2 K and the perpendicular wave vector transfer was
integrated in the range l = [0.92, 1.08] r.l.u.. The diffraction
data was previously published as Supplemental Fig. S2(a) in
Ref. [10]. It was reduced as total scattering S(Q), i.e., not
using the cross-correlation algorithm that may be used for
estimating purely elastic scattering S(Q, ω = 0).

INS was performed on a 0.7 g single crystal, which was
sealed in a thin-walled aluminium can with 1 atmosphere of
helium gas for thermal contact. Measurements at 4 K were
carried out using the SEQUOIA spectrometer [84,85] at the
SNS. The incident energy was set to Ei = 22.5 meV. The
crystal was mounted with [h, 0, 0] and [0, 0, l] axes in the hor-
izontal plane, and the orthogonal [0.5k,−k, 0] axis pointing
vertically upward. Data were collected by rotating the crystal
about the vertical axis over 290

◦
in 1

◦
steps. The data are

integrated over the range [0, 0, l] = [−3.5, 3.5].
Modeling. We consider a generalized spin-1/2 Kitaev-

Heisenberg spin (local moment) Hamiltonian,

H =
∑

γ=X,Y,Z

∑
〈i, j〉γ

Si · Jγ

1 · S j

+ J2

∑
〈〈i, j〉〉

Si · S j + J3

∑
〈〈〈i, j〉〉〉

Si · S j, (1)

on the honeycomb lattice [Fig. 1(b)], which is expected to
capture relevant interactions in the 2D plane; 〈. . . 〉, 〈〈. . . 〉〉,
and 〈〈〈. . . 〉〉〉 represent nearest, next-nearest and third-nearest
neighbors, respectively, and

JX
1 =

⎡
⎣

J1 + K 0 0
0 J1 �

0 � J1

⎤
⎦, JY

1 =
⎡
⎣

J1 0 �

0 J1 + K 0
� 0 J1

⎤
⎦,

JZ
1 =

⎡
⎣

J1 � 0
� J1 0
0 0 J1 + K

⎤
⎦.

Exchange matrices are defined in the {X,Y, Z} coordinate
system with principal axes along mutually orthogonal nor-
mal vectors of three nearest-neighbor Ru-Cl-Ru-Cl plaquettes.
Our model includes nearest-neighbor Heisenberg (J1), Kitaev
(K), and symmetric off-diagonal Gamma (�) interactions,
as well as second- (J2) and third-nearest (J3) Heisenberg
exchanges. For J2 = 0 it reduces to a proposed minimal
model for α-RuCl3 [29]. Equation (1) is, however, restricted
compared with some proposed models, notably neglecting,
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FIG. 2. (a) Machine-learned phase map varying �/|K| and J3/|K| through the optimal solution for α-RuCl3 at fixed J1/|K| = −0.1 and
J2/|K| = 0, with K < 0. Labeled phases include FM, Z.Z., and planar zigzag [Z.Z. (2D)] orders. The ellipsoidal approximation to the optimal
solution is marked in panel (a) in dark red. Due to uneven sampling of the IMA process from which the data were taken, the prediction
accuracy varies in parameter space resulting in a blotchy appearance. The different colors, which represent different structure factors S(Q), are
predicted by a trained neural network as explained in the main text. Panel (b) shows the surrogate predicted neutron structure factor, SSur (Q),
at numbered locations indicated in (a) and Fig. 1(c). Corresponding spin structures for the long-range-ordered phases labeled 1 and 3–7 are
given in the SM [21]. Note that Z.Z. and Z.Z. (2D) have similar long-range order but along different spin-orientation directions. This occurs
because, as discussed in Ref. [22], when K < 0 the spin orientation in Z.Z. ground states depends on the sign of �. Due to the neutron spin
polarization factor, the two S(Q) are different in the shown plane despite yielding the same trace over spin correlations,

∑
α Sαα (Q). Some of

the diffuse S(Q), taken at either phase boundaries or critical points, are also shown. The S(Q) labeled 11 and 12 are for the pure AFM and FM
Kitaev models.

e.g., interlayer exchange [11,23,86] and the �′ term associated
with trigonal distortion [20]. There are conflicting reports as
to the magnitude of �′ [33,70,73], such that neglecting it may
not be fully justified. Nevertheless, this choice of Hamilto-
nian allows us to reduce the computational complexity and to
clearly present our proposed method and its capabilities. We
note that ML-SCS techniques have been used to theoretically
explore phase diagrams of related Hamiltonians [87,88].

To simulate spin structure and dynamics, Metropolis
(Monte Carlo) sampling [89] and Landau-Lifshitz (LL) dy-
namics are used [80]. This incorporates effects beyond LSWT
while achieving sufficiently good performance to allow gener-
ating a sufficient amount of training data. Spin-1/2 operators
in Eq. (1) are approximated by classical spin vectors subject
to semiclassical normalization, |Si| = √

S(S + 1). Metropolis
sampling is carried out at a fixed temperature of 1 K, yielding
well-thermalized spin configurations. Spin dynamics is gov-
erned by the usual LL equations of motion; see Supplemental
Material (SM) [21]. The LL equation is solved numerically
using a fourth-order Runge-Kutta algorithm with adaptive
step size [90]. We use a cluster of 20 × 20 unit cells with peri-
odic boundary conditions [21]. Neutron magnetic form factor
for Ru3+, polarization factors, and instrumental resolution are
accounted for to match with experimental data. Figure 2(b)
shows sampling of diffuse scattering at different locations in
parameter space. The simulated scattering, Ssim(Q), shows
complex behavior, reflecting the rich physics of Eq. (1).

ML method. Our method builds on Ref. [81], which re-
cently demonstrated that an ML-integrated method can be
used with the experimental static structure factor, Sexp(Q),
to extract Hamiltonian parameters from diffuse scattering
data on a spin ice. Unlike spin ice, α-RuCl3 shows a mag-
netic diffraction pattern with sharp Bragg peaks associated
with long-range order, which does not sufficiently constrain
the model parameters. Thus we extend the method to also
account for the dynamical structure factor Sexp(Q, ω) from

spectroscopy. Although finding a single model to explain the
entire 4D scattering is a formidable task; doing so should help
avoid fits biased by incomplete information.

A ML-integrated workflow with autoencoder training
and global optimization was used to simultaneously fit for
both S(Q) and S(Q, ω). A 4D hyperparameter space, {p},
was explored to learn the uncertainty manifold in the 5D
parameter space {J1, K, �, J2, J3} [21] using a variant of the
efficient global optimization algorithm [81,91] which we call
the iterative mapping algorithm (IMA). Autoencoders are
unsupervised artificial neural networks with architecture as
shown in Fig. 3(a). We train two autoencoders [21] with either
S(Q) or S(Q, ω). The Encoder takes a linearized version of
the structure factor S(ν) [ν = Q or ν = Q, ω] and outputs a
compressed representation, S(L), reducing the input dimen-
sionality Nν = 106 − 108 pixels down to NL = 100 − 102.
The Decoder is a contrary network, which projects S(L)
back to the original dimensionality and predicts SAE(ν). Our
Encoders and Decoders are designed to be symmetrical, and
the numbers of layers are tuned as described in Ref. [21].

Two separate radial basis networks (RBNs) [92], shown
in Fig. 3(b), provide generator networks (GN) to approxi-
mately map the Hamiltonian space H ({p}) directly to latent
space, Lν ; see Ref. [21] for training details. The GN pro-
vides surrogate calculations to bypass the computationally
expensive direct solver, allowing exhaustive searches for
parameter space mapping as illustrated in Fig. 3(c). GN pre-
dictions depend on the degree of training of the network,
the topography of the parameter space, and the sampling
sparsity. They do not fully replace simulations and should
not be used to draw conclusions when detailed information
is needed. Complete surrogates predicting structure factors,
Ssur (ν), are constructed by linking the GN with the cor-
responding Decoder. These surrogates can also be used as
low-cost estimators in the IMA as an alternative to the Gaus-
sian process regression in Ref. [81].
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FIG. 3. Schematic illustrations of ML methods. (a) Autoencoder
architecture used to compress 3D/4D S(Q)/S(Q, ω) volumes into
a much lower dimensionality. The autoencoder is trained with sim-
ulated data to reproduce the input. The architecture consists of
two networks: Encoder and Decoder. The output of Encoder con-
tains a compressed (latent space) representation, S(L) of the input
S(Q, ω). Decoder decompresses S(L) into a filtered structure factor,
SAE(Q, ω), with the original dimensionality. (b) Schematic design of
constructing the surrogate for predicting S(Q)/S(Q, ω) given a set of
model parameters. The surrogate comprises a RBN as the Generator
mapping parameter space, H ({p}), to latent space SGN(L) and a De-
coder to reconstruct S(Q)/S(Q, ω) from latent space representations.
The GN is trained with simulated data for evaluated parameter sets
{p} as input and corresponding S(L) as target. (c) The ML workflow
implemented here to integrate scattering experiments with theory,
and extract model parameters and phase-diagram information.

As Fig. 3(c) schematically shows, the workflow can be split
into five sections: (I) Scattering experiment and hypothesis,
(II) parameter space exploration and information compres-
sion, (III) structure or property predictions, (IV) parameter
space predictions, and (V) validation of SCS results using a
quantum many-body solver. The workflow is similar to that
proposed in Ref. [93], but here we add step V and use a
composite latent space LQ ∪LQ,ω. The latent space forms
the backbone of the operation into which experimental data,
simulations, and predictions from GN feed and from which
structure, property, and model parameters are predicted.

ML predictions. The S(Q) [and consequently S(L)] pro-
vides natural classification of phases, as the correlations of
the system are encoded [93]. A high-dimensional graphical
phase diagram can be constructed easily by projecting Q
space into a latent space of NL = 3 as suggested in Ref. [93].
An architecture of three intermediate layers with 300-3-300
logistic neurons [activation function as f (x) = 1/(1 + e−x )]
was empirically found to have the highest performance for the
Ssim(Q).

Two phase diagrams are plotted in Figs. 1(c) and 2(a).
Phases are indicated by color derived by treating latent vectors
as RGB color components [80]. Figure 1(c) corresponds to
the J2 = J3 = 0 hyperplane and uses the parametrization [20]
J1 = sin θ cos φ, K = sin θ sin φ, � = cos θ , where the energy
scale is fixed according to 1 =

√
J2

1 + K2 + �2 . Overlaid

FIG. 4. Optimal solution for α-RuCl3. Panel (a) shows a slice of
χ̂ 2

S(Q) as a function of J3/|K| and �/|K|. The problem is strongly
underdetermined when only S(Q) is taken into account, with a flat
fitness landscape indicating many possible solutions. (b) Same slice
for χ̂ 2

S(Q,ω). The fitness landscape remains relatively flat when only
S(Q, ω) is accounted for. (c) Slice for the combined χ̂2

Com function,
which accounts for both statics and dynamics. An ellipsoidal approx-
imation to the optimal regions is shown in pink in panels (a), (b), and
(c). Panel (d) shows line cuts of χ̂ 2

Com for individual parameters by
fixing other parameters to their optimal values.

dashed black lines indicate the theoretically predicted phase
diagram. We note that typically our method does not find
sharp transitions, so our results are not phase diagrams in a
strict sense. Nevertheless, the excellent agreement between
Fig. 1(c) and the phase diagram derived in Ref. [20] shows the
merit of the approach. Figure 2(a) shows the phase diagram
in a slice around the optimal solution we find for α-RuCl3

(see Fig. 4 and later discussion). Figure 2(b) indicates the
scattering at various points in the two phase diagrams.

To fit experimental scattering data and map uncertainty
in the 5D parameter space, we employed IMA with cost
function χ̂2

Com = χ̂2
S(Q) × χ̂2

S(Q,ω), where the χ̂2
S(ν) are low-cost

estimators defined in the SM [21]. IMA samples the parameter
space iteratively subject to χ̂2

Com � CCom. The threshold value
CCom is iteratively reduced to a final value. The Autoencoders
and GN are retrained at the end of each iteration. Thus the
predictability of the networks becomes reliable toward the
minimum of χ̂2

Com.
Results and Discussion. Figure 4 shows slices and cuts

of the final χ̂2
Comin parameter space. Due to uncertainties

in the data, minimizing χ̂2
Com leads to a region of potential

fits indicated by the ellipsoid in panels (a)–(c). Additional
Hamiltonian terms may need to be included in the modeling
to capture all relevant interactions and achieve higher fitting
certainty. This restriction aside, we have identified several
parameter sets with particularly low χ̂2

Com, and these were
investigated more closely. Figure 5 shows S(Q) and S(Q, ω)
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FIG. 5. Top row: (a) Experimental and (b, c) theoretical static
spin structure factors calculated using (b) MC simulation and
(c) Lanczos ED for the optimized Hamiltonian parameters. All meth-
ods find peaks at the M points, reflecting the Z.Z. ordering. Bottom
row: Inelastic scattering from (d) experiment, (e) LLD, and (f) Lanc-
zos ED for the same parameter set.

from experiment, LL simulation, and Lanczos exact diagonal-
ization (ED) for the optimized parameter set: J1 = −0.4 ±
0.4 meV, K = −5.3 ± 0.3 meV, � = 0.15 ± 0.05 meV,
J2 = −0.19 ± 0.15 meV, and J3 = 1.35 ± 0.15 meV. The LL-
simulated spectrum shows intensity at both the M and �

points, although the intensity at � is lower than in the ex-
periment. In addition, the simulation captures the curvature
of the spin-wave dispersion along the � → M path as well
as the feature at ω = 6 meV. ED is subject to finite-size
restrictions and low-momentum resolution, but captures the
magnetic order and energy scale of the low-energy scattering
(ω < 5 meV).

How does our optimized solution compare to other pro-
posed models for α-RuCl3? Using the surrogates we can
easily calculate χ̂2 values for proposed models described by
Eq. (1). By this metric our fit outperforms other models in the
literature at describing the neutron data; see SM [21]. Our fit
has a Kitaev interaction strength comparable with a previous
INS fit [31] but lower �/K and higher J3/K . However, the
energy scale is generally smaller than for models predicted by
band structure calculations and for models that seek to explain
the experimental magnetic specific heat C(T ) [73]. Conse-
quently, thermal pure quantum state [94,95] C(T ) results
for the optimized solution fail to capture the experimentally
observed high-temperature peak [21,49]. One of our iden-
tified near-optimized parameter sets performs better in this
regard but worse at reproducing subtle spectral features [21].
This reinforces the point that Eq. (1) may miss some
important term.

One limitation of our approach is the use of SCS. This
was necessary to generate large amounts of training data and
allowed us to generate phase diagrams. However, quantum
effects can be significant close to phase boundaries, thus
locally diminishing the reliability of our networks and requir-
ing many-body verification. This is particularly important in
α-RuCl3, which is close to a phase transition under mag-
netic fields and where many Hamiltonian parameters matter.

Our optimized parameters are close to a transition between
the Z.Z. and the Z.Z. (2D) orders, but using ED we for-
tunately find the SCS results are physical and correctly
identify the ground state. In contrast, the recently proposed
Hamiltonian of Ref. [70] is close to a transition between
ferromagnetic (FM) and Z.Z. orders, and our SCS predicts
FM, while ED finds Z.Z. This suggests it may be use-
ful to retrain the networks using many-body simulations
in regions close to phase boundaries to increase physical
predictability.

Our analysis shows that subtle changes in parameters affect
the spectra and ordering. This means that other Hamilto-
nian terms could also account for the results. This implies
that zero-field neutron scattering is probably insufficient
to constrain the model beyond the treatment here. For a
more definitive understanding of α-RuCl3, additional data are
needed. Simulations of field dependence suggest that high-
field spectroscopy measurements should be helpful here in
disentangling the contributions of competing terms. Neutron
scattering with its ability to capture wave vector and energy
effects would be particularly valuable. Coanalysis of high-
field data along with zero-field measurements used here, as
well as other observable properties, can then be undertaken
using the ML-based approach.

Conclusion. We have demonstrated that unsupervised ML-
SCS methods can be used to solve the inverse scattering
problem inherent to INS experiments, thereby extending pre-
vious methods to also account for dynamics. Our approach
can be applied to a wide range of magnetic systems to obtain
phase diagrams and fit the full 4D experimental scattering,
as long as sufficient amounts of training data can be gener-
ated. For α-RuCl3 we find a relatively flat fitness landscape,
producing an uncertain fit. It does not fully explain the exper-
imental scattering, likely due to interactions not considered
here. Nevertheless, the optimal parameters reproduce many
smaller scattering features, not captured by other proposed
models. Improved algorithms are needed to extend the method
further to even higher-dimensional parameter spaces and to
fully constrain Hamiltonians. This can be done iteratively,
building on previously simulated data. With future advances
in computing power, we hope such methods may be used
to rapidly and reliably identify the crucial physics of new
materials.
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